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~le investigation of strong shock propagation processes in laminar media has two 
aspects. The phenomenon of pressure, and mass flow rate attenuation or magnification on the 
wave front as a function of the set of the laminar system should be referred to the first. 
It was predicted in [i] that as the layer thickness increased for systems of alternating 
plane light- and heavy-material layers the phenomenon of unlimited accumulation can be 
obtained. This phenomenon was later studied numerically and experimentally in [1-4]. For- 
mulas permitting the determination of the pressure and mass flow rate behind a bow shock 
front are obtained in [5-6] in a linear approximation, as it moves over the laminar material. 
It is sho~ first here that an increase or decrease in the pressure and mass flow rate are 
connected single-valuedly with the change in the acoustic impedances of the layers. This 
fact was later confirmed even for nonlinear interaction just for media consisting of two and 
three different layers [5-8]. However, it was noted in [9] that the growth in amplitude of 
the bow shock pressure is observed not only because of dissociation of the discontinuity on 
the boundary of materials with different acoustic stiffness, but also because of the origina- 
tion of compression waves that overtake the bow wave. 

A shock with pressure varying periodically in the front can be propagated during steady 
motion in a periodic laminar system [I]. The cell dimension here determines just the scale 
of the phenomenon, and the build-up time of the stationary wave pattern, and does not influ- 
ence the pressure amplitude. It was shown experimentally in [i0] that the bow wave amplitude 
at the identical depth is independent of the number of cells in the periodic laminar material 
(~I). Application of the approach developed in [5] yields strong damping of the bow wave 
amplitude as the number of crossings of the interfaces increases. This is associated with 
not tahing account of nonlinear effects. On the basis of an analysis of the nonlinear wave 
equation it is shown in [ii, 12] that an experimentally verified increase occurs in the ampli- 
tude of a weak shock as it is propagated in a periodic ~. 

~le investigations [i0, 13, 14] that set up when heterogeneous media can be modeled by 
laminar systems should be referred to the second aspect. 

Despite the large quantity of papers on the investigation of shocks in laminar materials~ 
propagation of finite-duration waves in periodic ~I during the unsteady motion phase with 
nonlinear effects taken into account, which can result in qualitatively new phenomena not 
described by linear models, has not been studied in practice at this time. 

The process of strong shock damping in periodic LM under impulsive loading in the 
unsteady motion phase is investigated numerically and experimentally in this paper. It is 
shown that the influence of the loading waves overtaking the bow wave can play a governing 
role in the change in bow wave amplitude. The influence of the number of cells, and the 
wave amplitude and length on the nature of its damping is investigated. 

io Physicomathematical Formulation of the 

Problem and Method of Solving It 

Let us consider the problem of strong shock propagation in a laminar material consisting 
of n identical cells, each of which contains a layer of the first substance of thickness hl 
and of the second of thickness h2. We consider the layer thickness much less than the diam- 
eter of the LM, which permits solving the problem in a one-dimensional approximation. The 
LI~ is loaded analogously to [15]. At a certain time a charge on the free surface, in contact 
with the ~i to be loaded, is excited by a detonation wave moving at the velocity D. During 
the time to =H/D, where H is the charge thickness, it reaches the boundary of contact with 
the LM and communicates a dynamic load thereto. 
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TABLE I 

10m l 
Teon 12,10:,0 Paraffin 0,9 4,t 
Aluminum 2,787 412 
COPPer 819 4,8 
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We describe the behavior of the solid body and the detonation products (DP) by a hydro- 
dynamic model in the Euler coordinates (t, x), which has the following form in the case of 
one-dimensional flows with plane symmetry 

dp/dt --I- pOu/Ox = O, pdu/dt + Op/Ox = O, de~dr + pdddt  = O, (i. I) 

where p is the density of the substance, p is the pressure, e is the specific internal 
energy, u is the velocity, v is the specific volume defined by the relationship v =l/p; d/ 
dt =3/3t +u3/3x. We close the system (i.i) with the equation of state 

p = p(p, e). (i. 2) 

At the time t =0 let a detonation wave emerge on the contact surface between the charge 
and the laminar material. We denote the running coordinate of the DP free surface by lo, the 
free LH surface by 12n+1, and its contact surfaces by li, i =I,..., 2n. men this problem 
is forraulated mathematically as follows: Find the functions u, p, p, e in the domain Z = 
{~o(t) <x <l=n+,(t), 0 <t <~}, that satisfy the system of differential equations (i.i) and 
(1.2) with the following initial and boundary conditions for Zi(t) <x <li+1(t)(i =0, .... 2n) 

Initial Conditions. The distribution of the DP parameters behind the detonation wave 
front at the time t =0 is given from the self-similar solution describing a Chapman--Jouget 
detonation wave [16], and we assume in the LM at t =0 

p = 0 ,  u = O ,  p = Pi ~r:  l ~ < x < l i + ~ ,  i = t , . . . ,  2n. 

Boundary Conditions. For t~0 the pressure is given equal to zero on the free surfaces 
x =~o(t) and x =~2n+~(t), and compliance with the continuity conditions for the normal stress- 
es and velocities is required for the contact surfaces x =Zi(t)(i =i, .... 2n). 

~le problem formulated was solved numerically by using a Wilkins-type through-computa- 
tion difference scheme [17] in which artificial viscosity was used for stable computation of 
the compression waves. Linear viscosity 

--qohCoPoOU/Ox ~r  Ou/Ox<O, 

q =  0 :~r  Ou/Ox>~O, 

was taken in the computations, where h is the mesh spacing, and qo is a constant [18]. 

Methodological questions associated with singularities of the numerical solution of the 
problem formulated by the mentioned finite-difference method are considered [9, 15]. 

In the numerical computations the equation (1.2) for the detonation products is select- 
ed in the form p = (y -- l)pe, and the computations were performed for the materials compris- 
ing the LIi for comparison with the two equations 

in the Tait form 

p = A((p/po)?-  1); ( 1 . 3 )  

in the form 

(1.4) 

obtained from the dependence D =Co +%u, where D is the shock velocity, u is the mass flow 
rate, and co, ~ are constants. The magnitudes of the parameters in (1.3) and (1.4) are pre- 
sented in the table. 
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Fig. i 

2. }~thodology of Performing the Experiment 

Shocks were produced in all the materials under investigation by using a plane shock 
generator [15]. 

Measurement of the mass flow rate in the Teflon--paraffin, LM, which remains a dielectric 
under the pressures being investigated, was by an electromagnetic method [19]. Values of 
the velocities were found from the formula u =~lOS/(H1d), where HI =396 Oe is the magnitude 
of the permanent magnetic field intensity used in the experiment~ d is the sensor crossbar 
width equal to 7.6 mm, and ~ is the voltage on the sensor as it moves. 

The laminar Teflon--paraffin material was assembled from individual paraffin and Teflon 
plates glued together by glue No. 88. The specimen was a cylinder of diameter 40 mm. Load- 
ing was along the cylinder axis so that the plane of the shock was parallel to the plane of 
the plates comprising the LM. ~le mean density of the specimens was checked in the tests. 
The measuring sensor was placed on one of the contact surfaces. Typical oscillograms for the 
mass flow rate measured for a LM with the cell dimension ~ =5 mm between cells 2 and 3 (curve 
a) and 5 and 6 (curve b) and for a l~i with 6 =2.5 mm between cells i0 and ii (curve c), are 
presented in Fig. i. The frequency of the timing mark is 1 mHz. The scale with u =i mm/~sec 
amplitude refers to curves b and c, while for curve a it is twice as large. 

~e laminar material AI--Cu was loaded by an analogous method. The diameter of speci- 
mens comprised of A1 and Cu plates was 50 mm. Measurement of the LM AIICu free surface 
velocity was by a contactless method [15]. This method is based on recording the electro- 
magnetic perturbations occurring during motion of the free metal surface in the electromag- 
netic field. The axis of the cylindrical specimen is placed perpendicularly to the vector 
HI in this case. The shock was also propagated along the specimen axis. In this case a 
contour of several turns (i-i0) of copper wire of diameter 0.i mm wound on an organic glass 
holder of dimensions 1.25 x6 mm. The magnitude of the signal depends on the specimen geom- 
etry and the loading conditions in this measurement scheme. A linear dependence of the emf 
being measured in the contour was found by special tests with copper specimens in an analo- 
gous geometry from the flight velocity of the central part (diameter 20 ~m) of the free sur- 
face with coefficient 60 • mV/(mm/~sec). In our geometry, a constant emf for ~5 ~sec cor- 
responds to a constant flight velocity. The scheme assures good time resolution, is inter- 
ference-immune, The means velocity of the free surface on a 3-4.5-mm base was also checked 
in all tests with this methodology by the times of the beginning of free surface motion and 
the beginning of its deceleration by the glass block placed in front of the measuring element. 
This check aids in verification of the deductions obtained on the basis of a continuous veloc- 
ity measurement. 

3. Analysis of the Computation 

and E~eriment Results 

Upon loading a L~ by detonation products, a head wave is propagated, behind which a 
complex wave pattern that varies with the lapse of time, is formed because of compression 
and rarefaction wave interaction and with the contact boundaries. The head wave also varies 
with time: first, because of the dissociation of the discontinuities on the contact inter- 
faces of the different materials in the LM, whereupon the formation occurs of waves moving 
in the forward and reverse directions; second, because of interaction with the waves that 
overtake the head wave moving at a higher velocity over the preliminarily loaded material. 
It is interesting to study the influence of both the first and the second factors on the 
nature of the change in head wave amplitude. 
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Without taking account of the overtaking effects, the influence of the first factor is 
conveniently demonstrated on the p--u-diagram (Fig. 2). Let the curve 1 be the shock polar 
of the first substance, and curve 2 of the second substance. The point A corresponds to 
states before the head wave front, where the material is not loaded. Let the shock move 
over the layer of the first substance, and let the point B correspond to the state behind 
the wave front. After a certain time the shock will reach the interface between the first 
and second substances. A refracted shock, whose state behind the front is marked by the 
letter C, and a reflected shock or rarefaction wave depending on the mutual location of 
curves 1 and 2 are formed because of interaction between the shock and the contact bound- 
aries. After interaction between the head wave and the next contact boundary (now between 
the second substance and tile first) the state marked by the point D, which lies below the 
point B is formed behind the front. The effect mentioned occurs because of the discrepancy 
in the values of the acoustic impedances of the substances from which the layers consist. 
Themorestrongly the acoustic impedances of the layers are distinguished, the lower willthe point 
B lie on the shock polar relative to D, meaning that the stronger will the pressure and mass 
flow rate amplitude in the head wave drop. A further pattern of the change in head wave 
amplitude is seen in Fig. 2. The different laminar vibration dampers and antimeteorite 

shields [20] are based on this property. 

Interaction between the head and unloading wave that occurs because of escape of the 
detonation products into a vacuum, resulting in constant head wave damping, and between the 
head and the load reflected raves overtaking the head wave, should be referred to the second 

factor. 

The influence of both factors on the nature of the change in head wave amplitude was 
estimated in the example of the LM Tef!on-4--paraffin (~ -- ~) and aluminum-copper (AI--Cu). 
The ratio of the acoustic impedances is 1.46 in the first case, and 2.38 in the second. The 
charge thickness was 16.8 mm in the computations, which took into account the influence of 
the planewave lens. The material parmeters and numerical values of the model constants are 
presented in the table. The data are obtained on the basis of [21, 22]. The results of com- 
putations performed with the equation of state in the form (1.3) and (1.4) are practically 

in agreement. 

It must be noted that, strictly speaking, repeated shock loading in laminar materials 
should be described by multiple-compression shock adiabats. In our computations the multiple- 
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compression shock adiabat was considered to agree with the single-compression shock adiabat, 
which is apparently justified for finding the mechanical shock parameters of tens of giga- 
pascals in intensity because of the small contribution of the thermal pressure as compared 
with the cold compression pressure. The good agreement between the numerical computations 
and experiment, as is observed even in such strongly compressible materials as paraffin and 
Teflon, is indirect confirmation of the validity of such an approach. 

To clarify the influence of different factors on the nature of the change in amplitude 
of the head wave, experimental investigations and numerical computations were performed on 
composites of a single con~non length, but with a different magnitude cell, the quantity of 
the contact boundaries in the LM was thereby variated. 

The experimental and computed time dependences of the mass flow rate in the material 
~--~ are displayed in Fig. 3. The total length of the T2~ was 50 mm. The Teflon plate was 
located closest to the charge. The magnitude of the cell ~ was 5 and 2.5 mm in the numeri- 
cal computations. The ratio between the layer thicknesses was hl/h2 = 3/7. The dependences 
were taken off on the boundary between cells 2 and 3 in a LM with ~ =5 mm, which corresponded 
to L =i0 mm from the boundary of the contact with the DP. Comparison of the dependences 
obtained numerically and experimentally (curves 2 and i in Fig. 3, respectively) for ~ =5 mm, 
shows their good quantitative and qualitative agreement in complex wave process details. A 
certain deviation of the computed dependence from the experimental for times greater than 
4.5 Bsec is visibly related to the influence of side unloading, i.e., in this case the physi- 
cal process becomes substantially nonuniform. It is seen in Fig. 3 that the amplitudes of 
the head wave mass flow rate in I~ with ~ =5 and 2.5 mm (curve 3 in Fig. 3) agree within the 
limits of accuracy of the computations, although in the second case the head wave encountered 
twice as many contact surfaces in its path. The same result is obtained in experiments to 
record the time dependences of the mass flow rate at the depth L =25 mm in LM with 6 =2.5 and 
5 mm, and in numerical computations at a depth L =25 mmwith ~ =2.5, 5, and 25 ram, as well as 
a depth of L =40 mm in a ~i with ~ =2.5 and 5 mm. This phenomenon contradicts the essential 
approach to the consideration of shockwave processes in laminar materials that is based 
solely on the interaction between the head wave and the interfaces and yields strong damping 
of the head wave amplitude as the number of crossings of the interfaces increases. 

An analogous result is obtained numerically in the problem of loading the material ~--~ 
with the cell ~ =25 and 2.5 mm by a flat impactor that produces a wave with parameters close 
to the DP loading. The thickness of the impactor was selected to be adequate to eliminate 
the influence of the rarefaction wave from its free surface on the motion of the contact 
boundary ~i, meaning also the wave pattern in the LM. Therefore, independence of the head 
wave amplitude from the number of crossings of the interfaces at a given depth is not relat- 
ed to the influence of the rarefaction wave but to the nonlinear effects of the overtakings. 

Analogous investigations were performed on the LM AI--Cu with the cell magnitudes ~ =4 
and 2 mm. Each cell contained an aluminum plate and a copper plate of identical thickness. 
The aluminum layer was closest to the charge. The total LM length was 12 mm in the experi- 
ments, and 12 and 16 mm in the numerical computations. 

Velocity profiles of the free surface vs time in the LM AI--Cu are presented in Fig. 4, 
where curve i is a computation, 2 is an experiment for ~ =4 mm, curve 3 a computation, and 
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4 an experiment for ~ =2 mm. The computational and experimental dependences are sufficiently 
close to each other, and quantitative and qualitative agreement on the wave patterns of the 
phenomenon holds. The velocity profile of the free surface has a three-wave configuration 
for both ~ =4 mm and ~ =2 mm. The amplitude of the second and third waves is somewhat lower 
than in experiments. This is visibly explained by the possibility of the plates in the 
e~)eriment recoiling from each other and their subsequent snapping. It is unexpected that 
the amplitude of the head wave in the LM with the finer cell is higher than in the LM with 
the large cell. Analysis of the p--u-diagram without taking account of the influence of the 
overtaking load waves on the head wave shows that the amplitude of the head wave mass flow 
rate in the LM AI--Cu with ~ =2 mm should be almost half that in the LM with ~ =4 mm. It is 
especially interesting that this phenomenon is obtained for loading by a triangular pressure 
pulse. This result indicates the governing role of the overtaking effects associated with 
the nonlinearity in material behavior, in head wave formation. 

Displayed in Figs. 5a and b are computational time dependences of the pressure and mass 
flow rate at different depths in LM A1--Cu (curve l) L =4 mm, ~ =4 mm; 2) L =4 mm, ~ =2 mm; 
3) L =8 mm, ~ =4 mm; 4) L =8 mm, 8 =2 mm; 5) L =12 mm, ~ =4 mm; 6) L =12 mm, ~ =2 mm). 
Clearly seen in these graphs is the dynamics of wave formation and the influence of the vari- 
ous factors on the nature of the change in the head wave amplitude. Thus, we see a signifi- 
cant diminution in the amplitude of the head wave as the number of crossings of the inter- 
faces increases at the depths L =4 and 8 mm, where the influence of the overtaking effects 
is still not felt. In this domain of the distances traversible by a shock of given amplitude 

572 



~,a  . . . . . . . . . . . . . . . . . . .  ~ '~ ( -<  . . . . . . . . . .  1 - - - - ~ ' ~  . . . . . . .  : . . . . . . . . . . . . . . . .  

~ 60 

0 ! Z E ,~sec 

Fig. 6 

and duration, the pressure and velocity can be determined behind its front on the basis of 
a simple computation in the p--u-diagram if the damping effects are not essential because of 
the rarefaction wave. Consequently, a computation of the effects of cumulation in inhomo- 
geneous laminar materials, based on the examination of p--u-diagrams [5], is possible for a 
small number of layers. At the same time the extension of this analysis to a large number 
of layers raises doubts. Indeed, even at an 8-mm depth in a ~{ with $ =2 mm it is clearly 
seen that a second loading wave moves behind the head wave, and overtakes the first and sub- 
stantially increases the mass flow rate and pressure behind it. At a 12-mm depth the head 
wave amplitude in a LM with $ =2 mm is already considerably greater than in a LM with ~ =4 
mm. In addition, a comparison of the maximal values of the pressure shows that it is 40% 
higher in the LM AI--Cu with ~ =2 mm than in the ~i with ~ =4 mm. 

It is interesting to study the influence of the wave amplitude on the nature of its 
damping since the role of the overtaking effects for weak shocks at the same distances 
should be lowered to a significant extent because of the diminution in the nonlinearity of 
the material behavior. Presented in Fig. 6 are time dependences of the pressure in a ~I 
AI--Cu under a loading by a weaker triangular pulse (same notation as in Fig. 5). Firstly 
the strong damping of the head wave amplitude with the increase in the number of interface 
crossings, and secondly the absence of anomalously high values of the pressure in the ~I 
with a finer cell can here be noted. 

Therefore, the nonlinear overtaking effects, resulting in qualitative singularities 
distinct from the linear analysis, appear more substantially for strong waves of finite 
duration with a 6-7 cell spatial scale. It can be expected that as the loading wave dura- 
tion diminishes even though its amplitude is high, the effects considered will appear weaker. 
In particular, if the spatial size of the compression pulse is less than the size of one 
plate in the LM, then the overtaking effects cannot generally appear, and the damping of 
even a strong shock can be estimated on the basis of an examination of the interaction 
between just the head wave and the contact surfaces, and of the influence of rarefaction 
wave thereon~ We performed computations for a shock produced in a LM AI--Cu by detonation 
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of a layer of the same charge hut with a 4.2-mm thickness (Fig. 7: same notation as in Fig. 
5). From a comparison of the results presented in Figs. 5 and 7 it is seen that the effect 
mentioned actually takes place. In particular, for L =12 mm the head wave in both a Ll~ with 

=2 mm, and a LM with ~ =4 mm, is clearly isolated in Fig. 7, where the amplitude in the 
~ with the finer cell is considerably lower than in the LM with the coarse cell. 

Numerical computations in a LM with AI--Cu were performed by using an elastic--plastic 
model also. The qualitative results elucidated above agree for the computations with the 
hydrodynamic and elastic--plastic models. 
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RESPONSE OF AN ANHA~NIC CRYSTAL TO 

A LOCALIZED INITIAL II~ETUS 

A. S. Dolgov UDC 534+539.2 

~lere is much interest in the time dependence of the atomic displacements in a crystal 
after an initial impetus because of the need to examine the interactions of an atomic-par- 
ticle beam with a solid surface, which includes nonstationary deformation after localized 
action of impact type. There are several papers dealing with the response of crystals to 
external shocks or with discussion of the physical effects associated with the response func- 
tion [1-4]. Nearly all theoretical papers on this topic employ the harmonic approximation. 
The role of slight anharmonicity has been discussed in [5]. 

However, most of the physical processes involved here are based on levels of initial 
excitation such that one cannot assume that anharmonic effects are small or unimportant. 
~lerefore, major interest attaches to proper incorporation of the nonlinearity in the inter- 
action. Numerical calculations, although useful, are only partial in character and cannot 
completely replace analytical consideration designed to elucidate the general features. Here 
we present a certain class of solutions for the displacements in a decidedly nonlinear struc- 
ture. 

We take a structure with a p~er-law dependence for the potential energy on the relative 
displacements, which under certain conditions given belou allows one to determine the main 
features in the process. We give the following form to the equations of dynamics for a one~ 
dimensional atomic chain with interaction between nearest neighbors: 

d:.e, /dt~ ~ - a { ( . v , , - 1  --a:,~):p~l __ (.~,, __ au 1}, (1)  

where x n is the displacement of an atom, which is assigned subscript n, relative to its 
equilibrium position, ~ile p is an integer that is not zero (subject to certain reserva- 
tions, the constructions given below can be extended to the case of arbitrary nonnegative 
value of p). Equation (i) does not contain a linear component. This feature of the force 
interaction occurs for example in the transverse component of the vibrations in a rectilinear 
atomic chain, where the lowest order in the dependence of the forces on the displacements 
corresponds to the third degree. Also, the role of the linear component may be secondary for 
o~ler structures with vibrations of large scale. Of course, incorporation of the components 
linear in the displacements would extend the range of real objects that correspond qualita- 
tively to (I), but in that case one does not obtain clear final formulas. On the other hand, 
solutions in the form of long-wave solitons that can be derived are of other interest, but 
the purposes differ from those of this study. Therefore, we take (i) as the starting point. 

The continuum approximation for (i) gives 

o~z 0 [ O x ~  ~p+x 
0 7  = = ~ ~'~'n J " (2) 

Considerations of scale invariance for (2) suggest that it is desirable to seek the 
solutions in the form 

x (n ,  t) = 1(~), ~ = n t - i / (P+l ) .  (3) 

Substitution of (3) into (2) reduces the latter to an ordinary differential equation: 

~larkov~ Translated from Zhurnal Prikladnoi l~khaniki i Tekhnicheskoi-Fiziki~-No. 4, 
pp. 139-142, July-August, 1983. Original article submitted June I0, 1982. 

0021-8944/83/2404-0575507.50 �9 1984 Plenum Publishing Corporation 575 


